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Abstract. Monotone piecewise cubic interpolants are simple and effective. They

are generally third-order accurate, except near strict local extrema where accuracy de-

generates to second-order due to the monotonicity constraint. Algorithms for piecewise

cubic interpolants, which preserve monotonicity as well as uniform third and fourth-

order accuracy, are presented. The gain of accuracy is obtained by relaxing the mono-

tonicity constraint in a geometric framework in which the median function plays a

crucial role.

1. Introduction. When the data are monotone, it is often desirable that the

piecewise cubic Hermite interpolants are also monotone. Such cubics can be constructed

by imposing a monotonicity constraint on the derivatives, see [2], [3], [5]-[10], [17], [19].

These constraints are obtained from sufficient conditions for a cubic to be monotone.

A necessary and sufficient condition for monotonicity of a Hermite cubic was indepen-

dently found by Fritsch and Carlson [10], and Ferguson and Miller [8]. The resulting

constraints are complicated and nonlocal [7], [10]. A simpler sufficient condition, which

generalizes an observation by De Boor and Swartz [5], is more commonly used [10], [17],

[19]. The corresponding constraint is local. It imposes different limits on the derivatives

depending on whether the data are increasing, decreasing, or have an extremum. In

[17], Hyman simplified De Boor and Swartz's method by enforcing a single limit for all

cases. Hyman's constraint is also less restrictive and slightly more accurate. However,

in some special cases as shown in subsection 2.3 below, this constraint may create os-

cillations. A different idea for simplification was presented by Butland [2], and Fritsch



and Butland [9]. They constructed limiter functions whoseargumentsare the slopesof

the piecewiselinear interpolation. The resulting derivatives satisfy the monotonicity

constraint a priori, but they are at best second-order accurate. The constraints of De

Boor and Swartz and Hyman, on the other hand, can be applied to any high-order

approximation of the derivatives.

A major problem of the above methods, including the fourth-order algorithm in [7],

is that if the data are no longer monotone, the constraints may cause a loss of accuracy.

In fact, near strict local extrema, the interpolants are only second-order accurate, i.e.,

the error is O(h_), and thus, no better than linear interpolation. Recently, Hyman's

constraint was modified to obtain uniform third-order accuracy [6]. The proofs of

stability and monotonicity, however, were not shown.

In a different context, namely numerical simulations of conservation laws, there

has been a great deal of effort to preserve monotonicity by constraining the deriva-

tives, see [12], [18], [20]-[22], [24], [27], and the references given there. In an earlier

paper [26], Van Leer introduced a monotonicity constraint which corresponds to De

Boor and Swartz's constraint for quadratic interpolation. His harmonic mean limiter

is also identical to that of Butland [2]. In this context, the study of limiter func-

tions was simplified by reducing them to functions of one variable instead of two. It

is well-known that all limiters suffer a loss of accuracy near strict local extrema. Re-

cently, Roe [22] suggested that "Although only very simple ideas are involved, more

research is still needed to clarify the properties of limiter functions." In [15], Harten

and Osher solved the loss of accuracy problem by combining monotonicity and accu-

racy into nonoscillatory, piecewise parabolic interpolation. The concept behind their

UNO method completely deviates from that of the monotonicity constraint: it defines

high-order accurate derivatives which do not cause oscillations, but it does not provide

a constraint for other approximations of the derivatives. The ENO schemes [14], which

are higher-order extensions of the UNO method, are unstable in the sense that a small

change in the data can produce a large change in the interpolant. Although the UNO

and ENO schemes are highly accurate, they are somewhat diffusive, e.g., they smear

contact discontinuities [13], [28], [30]. Modifications of these schemes to improve the

resolution at contact discontinuities can be found in [13], [28]. In [16], the present
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author took a different approach to obtain uniform high accuracy: the monotonicity

constraint was extended in a geometric framework using the UNO method. The re-

sulting SONIC schemesare highly accurate [16], [29], and the UNO schemeitself is a

memberof the SONIC class.

Wefollow the author's geometricapproachbelow. First, the conceptof monotonic-

ity of the data in an interval is introduced sothat monotoneparts can be distinguished

from strict local extrema. Next, wepresent ageometric framework in which the median

function plays a crucial role for all methods. In this framework, De Boor and Swartz's

constraint is essentially assimple asHyman's. Since the latter may causeoscillations,

we chooseto extend the former. Our systematic approach results in severaluniform

third-order as well asfourth-order constraints which are stable and can be applied to

any high-order approximation of the derivatives. The geometric framework and the

introduction of new conceptsalso made possible the proofs of monotonicity, accuracy,

and stability. We note that the UNO schemeis a member of the classof third-order

methods presentedhere. It producesinterpolants which are the "flattest" in this class.

On the contrary, the fourth-order ENO scheme,which is unstable, doesnot belong to

the fourth-order classwhosemembersarestable. Sinceseveralof our methods employ

limiter functions, we present a rather complete analysisof the essential properties of

limiters. Finally, for smoother transitions near the boundaries, we introduce nonlinear

boundary conditions via the median function. Note that our methods can also be com-

bined with cubic splines in a manner similar to Hyman's method [17]. However,only

local methods are presentedbelow.

This paper is essentiallyself-contained.In section 2, monotonicity of the data in an

interval is defined,and well-known resultson Hermite cubicsare reviewed. The De Boor

and Swartz monotonicity constraint and algorithm are presentedusing our framework

in subsection2.1. Subsection2.2 deals with limiter functions by first reducing them

to functions of one variable. It is shown that the construction of a limiter g can be

reduced to that of a function on [0, 1] with g(0) -- 0, and g(1) - 1. Furthermore,

the order of accuracy of a limiter is determined by the slope gl(1) in the case of a

uniform mesh. In subsection 2.3, Hyman's method is described, and examples which

show the difficulties of obtaining both accuracy and monotonicity are presented. These



difficulties are then resolved in section 3. Subsection 3.1 describes the UNO scheme

using the median concept. In subsequent subsections, three different monotonicity-

preserving constraints, which are stable and provide third-order accurate interpolants,

are presented. It is shown that these constraints reduce to that of de Boor and Swartz

for monotone data; however, they can be less restrictive when the data are no longer

monotone. In subsection 3.5, besides additional analysis and comparison of third-

order methods, we present examples which show that all third-order constraints may

not reproduce a cubic, and that near inflection points with zero slopes, they are no

higher than third-order accurate. In section 4, fourth-order methods are presented.

Nonoscillatory cubics, which are introduced in subsection 4.1, are employed in the

definition and the development of fourth-order q-monotonicity-preserving constraints

in subsection 4.2. Several nonlinear boundary conditions are presented in section 5

by using the median function. Numerical results are shown in section 6. Finally, the

discussion on some applications of the new methods and the conclusions axe presented

in section 7. For readers who are only interested in high-order monotonicity-preserving

constraints, we suggest that they skip subsections 2.2 and 2.3.

2. Cubic Hermite interpolation. Let the mesh " ,{xi}i=m m < n, be a partition

of the interval [xm,x,] such that xrn < xm+l < ... < x,-1 < x,. Let {f_} be

the corresponding data which are samples of a piecewise smooth function f, and let

Fi = (xi, fi). The local mesh spacing is Axi+l/2 = xi+l - xi, and the maximum value

of all Axi+l/2 is denoted by h. The slope of the piecewise linear interpolant is equal to

the first divided difference,

si+i/_ = f[_,,z,+l] = Af_+_/2/Axi+m. (2.1)

The data are increasing at xi if fi-1 <_ fi <_ fi+l. They are increasing in [xi,xi+l] if

they are increasing at xi and xi+l, i.e., fi-1 <_ fi <_ fi+l __ fi+2. Similar definitions

hold for decreasing data with appropriate sign changes. The data are monotone at

zi (or in [xi, xi+1]) if they are increasing or decreasing at xi (or in [xi, xi+1]). Note

that our definition of monotonicity of the data in [xi, mi+l] is rather straightforward;

however, it plays an essential role in the high-order extensions of the monotonicity

constraints and their proofs. The interpolant Pf is monotone in [xi,xi+_] if (Pf)(x)
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is monotone for x between zi and zi+l. The interpolant is of class C k if (Pf)(z) is

continuous and has continuous derivatives for all orders less than or equal to k.

Given the data {fi} and the slopes {]i}, which respectively approximate the exact

values {f(xi)} and {f'(xi)}, the cubic Hermlte interpolant is defined for xm <_ x < Xn

in terms of fi, fi+l, ]i, ]i-I-1 by (see [4] or any standard text on numerical methods),

q(x) = c3(x - xi)3 + c2(x - xi)_ + c1(x - xi) + Co (2.2)

where, for xi <_ x < zi+l,

c0= y_, c, = ],,

_ = (3,,+,/_- 2£ - ]_+,)l(a_,+,/_),

c3 = (]i + ]i+, - 2si+,12)l(Azi+,/2) 2.

Onecaneasilyverifythatq(_) = f_,q'(_) = ]_,q(_+_)= Y_+I,q'(_+_)= ]_+,.
Consequently, the interpolant (2.2) has a continuous first derivative (q(x) E C1). It is

fourth-order accurate if the derivatives {]i} are exact or third-order, and third-order if

the derivatives are second-order, etc. These derivatives can be approximated by using

polynomial interpolation. If quadratic interpolation is used, one obtains the following

formula which is second-order accurate: it approximates the exact derivative to O(h2),

/i = AXi-l/28i+l/2 + AXi+l/28i--1/2 (2.3)
Azi-U2 + Axi+_/2

(Note that the order of accuracy as defined in the literature dealing with conservation

laws is one less than that defined here, which follows the definition in the literature

dealing with monotone interpolation). The above expression is called the parabolic

formula [17] since it gives the slope at xi of the parabola Pi(x) = (x,pi(x)) through the

points Fi-1, Fi, and Fi+l. Such an approximation has the advantage of being local in

the sense that only nearby data are used. The resulting interpolant (2.2) is also local.

If the data {fi} are monotone, the interpolant is not necessarily monotone. One needs

additional constraints on {]i}.

2.1. Monotonicity constraints. Let I [zl,..., zk] be the smallest closed interval

containing zl ,. • •, zk, i.e.,

I [z,,..., zk ] = [min(z,,..., zk ), max( z,,..., z/, )].
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Let the medianof three numbers be the one which lies between the other two. Notice

that the median lies in the interval definedby any two of the three arguments. Let

minmod (x, Y) = median (x, Y, 0),

then a convenient formula for the mimnod function is

1

minmod (x, y) = _ [sgn (x) + sgn (y)] min (]xl, [y]) (2.4)

where sgn(x) = 1 if x is positive, and sgn(z) = -1 if x is negative. Observe that if

x = 0, it does not matter whether sgn(x) is defined as -1, 0, or 1 in (2.4) since the

resulting minmod is 0. The minmod function is more commonly defined as, see e.g.,

[12],[15],[24],[26],

{ sgn (z) min(l_l, IvJ)minmod (x, y) = 0
if xy > O,

otherwise.

Conversely, the median function can be expressed in terms of minmod:

median(x,y,z) = x + minmod (y- x,z- x)
(2.5)

= Y + minmod (x - Y, z - Y).

The following sufficient condition for monotonicity is a generalization of an observation

by De Boor and Swartz [5]. It was developed and used by many authors [6], [101, [171,

[t9].

Lemma 1. If

e (2.6)

then the resulting interpolant (2.2) is monotone in [xi, xi+l].

The constructive proof below is simpler than those of the necessary and sufficient

condition [6], [10]. The case of fi = fi+_ is trivial since the interpolant is a constant

function. If fi # fi+l, consider the linear change of coordinates _ = (x - xi)/Axi+_/2,

f] = (Y- fi)/Afi+a/2, where (x,y) is the original coordinate system. Clearly, the cubic

y = q(x) defined by (2.2) is transformed to a cubic 0 = q(Y:). By using the chain rule,

the monotonicity of q(x) for xi <_ x < xi+l is equivalent to the monotonicity of _(_')

for 0 _< k _< 1. Without loss of generality, therefore, one may assume xi = 0, xi+l = 1,
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and fi = 0, fi+, = 1. As a result, each pair (.fi,]i+l) determines an interpolant. The

four pairs (]i, ]i+1) = (0, 0), (3,0), (0,3), and (3,3) form the comers of a square called

the De Boor and Swartz square shown in Fig. la. Denote the four corresponding

interpolants by h(0,0), h(a,0), h(0,a), and h(3,3). Using definition (2.2), it follows that

h(o,o)(X) = -2x a + 3x _,

h(o,3)(x) = x 3,

h(a,o)(X) = x 3 - 3x 2 + 3x,

h(a,a)(x) = 4x 3 - 6x 2 + 3x.

3.0

2.5

2.0

fi+ 1

1.5

1.0

0.5

0.0
0.0

•: i "(.i,3) :
• : : : :
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(a) De Boor and Swartz's square (b) The interpolants of its four corners

Figs. 1. De Boor and Swartz's square and the interpolants of its four corners.

One can verify that the above cubics are increasing for 0 < x < 1, see Fig. lb. Any

linear combination of them with positive coefficients is also increasing for 0 _< x < 1.

Denotc (]i,]i+l) by (a, fl), then condition (2.6) is equivalent to 0 < a/3 g 1, and

0 <_ fl/3 _< 1. Consequently, the following cubic Hermite interpolants are increasing for

O<x<l:

c_h c_h(o,o)= 5 + (1- -ff)h(o,o),

____.0_ Ot_ h

h(,_,a) _'h(a,3) + (1 - _-) (o,a),

h(,_,t_ ) = _h(,_,3) + (1 - _-)h(_,,o).

Note that the slopes (fi,]i+,) of the above cubics are respectively (_,0), (c_,3), and

(_, fl). This completes the proof.



Fergusonand Miller [8], and Fritsch and Carlson [10] independently found a neces-

saxy and sufficient condition which is an extension of (2.6), see also [6]. Because of its

simplicity, however, condition (2.6) is more commonly used. Note that in the context of

conservation laws, the factor 3 in (2.6) is replaced by 2. The reason for this difference

is that the solutionsl as functions of time steps, correspond to quadratic rather than

cubic interpolations, see [16].

Expression (2.6) with index i replaced by i - 1 together with (2.6) imply

]i E I[0,3si-1/2] and ]i E/[0,3si+a/2]. (2.6')

Consequently, ]i belongs to the intersection of I [0, 3si__/2] and I [0, 3si+a/2], which is

I [0, minmod (3si-a/2, 3si+1/2)]. Thus, if

]ie I[0,38,] (2.7)

where

si = minmod (8i-1/2,8i+1/2) (2.8)

for all i, m < i < n, then the interpolant (2.2) is monotone in [xi, xi+_], m < i < n - 1.

To bring ]i into the interval I [0, 3si], it suffices to replace ]i by the median of ]i,

0, and 3si. Using the definition of the minmod function, one obtains the monotonicity

algorithm

/i *-- minmod (]i,3si). (2.9)

Notice that (2.9) can also be expressed as

)_i _ minmod [minmod (]i, 3si-1/2), 3si+1/2], (2.9')

i.e., the constraints are enforced on the left, and then on the right. Both (2.9) and

(2.9 I) are equivalent to the following commonly used formula:

0
]i_ min[max(O,]..i),3min(si-i/2,si+l/2)]

max [min(O, fi),3max(si_l/2,si+a/2)]

if 8i_1/2si+1/2 < O,

if si-1/2 and si+a/2 > O,

if si-1/2 and si+a/2 < O.

Expressions (2.9), (2.7), and the interval in (2.7) are called the MP (monotonicity-

preserving) algorithm, the MP constraint, and the MP interval, respectively. The

combination of (2.3) and (2.9) is called the MP-parabolic algorithm.



Next, we show that if f E C 2, {fi} are second or higher-order accurate, and

the original {]i} are at least first-order, then at the part where the exact derivative

f'(z) _ O, the MP algorithm has no effect provided the mesh is fine enough. Indeed, let

xi be in a small neighborhood of x such that f'(xi) _ O. Since both si-1/2 and si+l/2

approximate f'(xi) _ 0 to O(h), they are both strictly positive, or strictly negative for

small enough h; consequently, the MP interval contains I[0, 3f'(xi)] up to an error of

the order O(h). Because the original ]i approximates f'(xi) to at least O(h), it belongs

to the MP interval, and thus is not altered by the MP algorithm.

To analyze the MP constraint near strict local extrema, assume that f E C 3, {fi}

are third or higher-order accurate, and the original {]i} are at least second-order. Near

a strict local extremum at x -- x*, suppose f"(x*) _ O. The following arguments hold

in a small neighborhood of x* where higher-order terms can be neglected. Again, by

using a linear change of coordinates as shown in the proof of Lemma 1, we may assume

x* = 0, and f(x) = x2+ higher-order terms. We claim that if 0 < xi-a < xi < xi+a

(similarly for _i-1 < xi < xi+1 _< 0), then the MP algorithm does not alter ]i provided

h is small enough. Indeed, by calculating si-1/2, si+l/2 from the above expression for

f(x), it follows that the MP interval contains [0,3xi]. Since f'(xi) = 2zi + O(x_), and

[fi- f'(xi)[ = O(x_), one concludes that fi lies in the MP interval if h is small enough,

and the claim follows. Observe that there are at most two data points adjacent to the

local extremum which satisfy neither x* <: xi-1 < xi < xi+l nor xi-1 < zi < zi+l <_ x*.

At these points Fi, xi-a < x* < xi+l, and the MP algorithm may change the original

)_i, causing a loss of accuracy.

Note that in the MP-parabolic algorithm, both (2.3) and (2.9) are defined in terms

ofsi_i/2 and si+l/2. Therefore, one may attempt to derive formulas for ]i which satisfy

the MP constraint (2.7) a priori. Such an approach is presented below.

2.2. Limiter functions. For convenience of notation, in the rest of this section,

denote si-1/2 and si+l/2 by s and t, respectively. Let

=GO, t)

where G is a nonlinear averaging function called a limiler function. Fritsch and Butland

[9] analyzed G as a function of two variables. We follow the analysis commonly used



in conservation laws by first reducing G to a function of one variable, see e.g., [18],

[20]-[22], [24], [26], [27]. The analysis below is more complete and leads to many new

limiters. In order for G to give a result independent of units of measurement, it is

necessary that G is homogeneous of degree one, that is, for any real number k,

a(ks, kt) = ka(s,t).

Substitute k = 1/t into the above equation, one obtains

O(s,t) = tG(s/t, 1) = tG(r, 1) = tg(r) (2.10)

where r = s/t and g(r) = G(r, 1). Expression (2.10) shows that G is completely

determined by g; therefore, g is also called a limiter. Since G is an averaging function,

the following properties for G are desirable (see also [9]):

a. G is symmetric, i.e., G(s, t) = G(t, s). From (2.10), this is equivalent to

tg(r) = sg(llr), or g(1/r) = (llr)g(v). (2.11)

b. G(s, t) lies between s and t. Equivalently,

g(r) E I[1, r], (2.12)

i.e., the graph of g lies in the shaded region of Fig. 2a, which is called the

second-order region (more precisely, sufficient for second-order accuracy re-

gion) for the following reason: since both s and t approximate f'(xi) to O(h),

the above condition implies the same is true for fi; consequently, the in-

terpolant (2.2) is at least second-order accurate. Note that (2.12) implies

g(1) = 1.
The next two conditions correspond to stability and monotonicity:

c. G or g is continuous,

d. G(s,t) satisfies the MP constraint (2.7), i.e.,

g(r) e I[0,3minmod(1,v)]. (2.13)

Observe that the above condition implies that if r < 0, then g(r) = 0. For

r > 0, it means that the graph of g lies in the shaded region of Fig. 2b. This

region, together with the negative r-axis, is called the MP region.
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Figs. 2. Limiters.

In this paper, unless otherwise stated, all limiters satisfy the first three of the

above four conditions, and limiters in this subsection also satisfy the fourth. Note that

in the context of conservation laws, limiters need not satisfy all of the above conditions,

see e.g., [18], [23],[24].

For r > 0, condition (2.12) together with (2.13) are equivalent to the fact that the

graph of g lies in the intersection of the shaded regions of Figs. 2a and 2b, which is
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shown in Fig. 2c. This region, together with the negative r-axis, is called the MP2

region. (The MP2 region is similar to the TVD2 region defined by Sweby [24]; the

difference is that the constant 2 is replaced by 3.) Furthermore, for r > 1, g(r) can

be defined in terms of g(r) where 0 < r < 1 thanks to the symmetric property (2.11).

Thus, the task of defining the limiter function G reduces to that of defining a continuous

function g(r) for 0 < r < 1 such that g(0) = 0, g(1) = 1, and the graph of g lies in the

region bounded by the three fines ¢(r) = r, ¢(r) = 1, and ¢(r) = 3r. Some popular

limiter functions are listed below.

The minmod limiter [12], which corresponds to the lower boundary of the MP2

region, is defined by

g(r)= n'fnmod(1,r), or G(s,t) =minmod(s,t). (2.14)

To obtain the harmonic mean limiter, which was discovered independently by Van

Leer [vL] and Butland [2], one represents g by a rational function of the form ar/(br + 1)

where a and b are constants. If we assume g'(O +) = 2, then a = 2; since g(1) = 1,

b = 1. Thus,

g(r)- r ÷ (2.15a)
1÷ I 1'

or

0
O(s,t) = 2st

if st < O,

(2.15b)
if st > O.

Fritsch and Butland [9] observed that the harmonic mean limiter produces curves

that are "too flat" because gt(0+) = 2. They proposed the following limiter function

with g'(O +) = 3,

or

0

3r

g(r)= l+2r

3r

2 + r

a(s,t) =

0

3st

2s+t

3st

s+ 2t

if r_<0,

if0<r_<l,

if r> 1,

(2.16)

if st < O,

if st > 0 and lsl < Itl,

if st > 0 and Isl > Itl.
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The limiter which correspondsto the upper boundary of the MP2 region is similar

to Roe's "Superbee" limiter [20], [24]:

g(r) = min{max(1, r),3minmod (1, r)}. (2.17a)

The corresponding expression for G(s,t) is obtained by first defining the maxmod

function,

1 [sgn(_) + sgn (t)] max (Isl, Itl),
maxmod (s, t) =

G(s, t) = minmod [maxmod (s, t), 3minmod (s, t)]
(2.17b)

= _1[sgn (s) + sgn(t)] rain [max(Isl, Itl),3min(Isl, ltl)].
2

The above definition of the maxmod function is unstable when s = 0 or t = 0; however,

since the limiter returns 0 in these cases, it is stable. Note that our definition of

the maxmod function simplifies the expression of the "Superbee" limiter; furthermore,

(2.17b) extends to higher-order cases in the next sections.

The minmod, the Fritsch-Butland, and the "Superbee" limiters are only first-order

accurate because the slopes of these limiters are discontinuous at r = 1 (more on this

later). Assume that g is piecewise C 1, then g' is continuous at r = 1 if and only if

g'(1-) = 1/2, or g'(1 +) = 1/2, or

g'(1) = 1/2. (2.18)

Indeed, by different iat ing (2.11),

and the above claim follows, since g(1) = 1.

again by differentiating the above equation,

g"(r) = r-_g

Furthermore, if g is piecewise C 2, then

Consequently, g"(1-) = g"(l+), i.e., g" is continuous at r = 1 a priori. We present

below three limiter functions with g'(1) = 1/2 and g'(0 +) = 3.

The average limiter is defined by enforcing the constraint on the average, (see [26],

[27] for the average limiter with g'(0 +) = 2),

g(r) = minmod { 1--+--r, 3 minmod (1, r)}, (2.19)
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or

/
The above limiter is the combination of Fromm's scheme [11] and the MP algorithm.

Its graph is shown in Fig. 2d.

If we use a rational function of the form (a2r 2 + alr)/(r _ + br + 1) to calculate

g, then, in order that O'(0) = 3, al = 3. Since 9 tends to 3 as r tends to oo, a2 = 3.

Finally, g(1) = 1 implies b = 4,

0
g(r) = 3r 2 + 3r

r 2 + 4r + 1

if r _<0,

ifr >0,
(2.20)

or

0 if st < O,
G(s,t) = 3st(s + t)

s 2+4st+t 2 if st>O.

If a cubic of the form (2.2) is used, the result is

0 if r < 0,

g(r)= 3r3- 7r2 +3r if0<r<l,

6r 2 7r+3 if r> 1
2r2

(2.21)

Since the corresponding expression for G(s, t) can be obtained in a similar manner as

the above limiters, it is omitted.

Next, we show that the harmonic mean and the above three limiters are second-

order accurate.

Lemma 2. Suppose f 6 C 3, and the data {fi} are third or higher-order accurate; the

mesh is uniform; the limlter function g is continuous, piecewise C _, and satist_es (2.1I)

and (2.12); then at the part where if(x) # O, ]i detined by g approximates the true

derivative f'(xi) to second-order accuracy for small enough h if and onIy if g'(1) = 1/2.

First, suppose g'(1) = 1/2. We will show that ]_ is second-order. Since the mesh

is uniform, the limiter ga(r) = (r + 1)/2 yields identical ]i as the parabolic formula

(2.3); consequently, it is second-order. Because both s and t approximate f'(x_) _ 0

14



to O(h), if h is small enough, t is bounded away from 0, and r - 1 = O(h). Since g_

and g have the same slopes at r = 1,

g(r) - g_(r) = O((r - 1) 2) = O(h=);

therefore, .fi defined by g is second-order.

Next, suppose g'(1-) = fl _ 1/2. We will provide an example where the resulting

]i is only first-order accurate (the case g'(1 +) _ 1/2 is similar). Let fi be defined by

the quadratic f(x) = x 2 +x, and let xi = O, xi-1 = -h, and xi+l = h. Then s = 1 - h,

t = 1 + h, r = 1 - 2h + O(h2). From (2.10),

]i = (1 + h)[1 + fl(r - 1) + O(h2)] = 1 + (1 - 2_)h + O(h2).

Since f'(xi) = 1 and fl # 1/2, the above ]i is first-order. This completes the proof.

For an irregular mesh, all limiters are first-order accurate, while the MP-parabolic

algorithm is still second-order away from strict local extrema. Near strict local extrema,

however, the monotonicity constraint causes a loss of accuracy as shown below.

2.3. Accuracy and monotonicity. If the data are not monotone in [xi, xi+l],

the MP algorithm (2.9) still produces a monotone interpolant, which causes a loss of

accuracy as in the following well-known example, see e.g., [6]. Let the data points be

on a parabola such that fi = fi+l as shown in Fig. 3; then the MP constraint (2.7)

implies that ]i = ]i+l -- O. Therefore, fi and ]i+1 are only first-order accurate, and

the cubic interpolant reduces to linear interpolation between fi and fi+l. Observe that

the interpolant is still monotone in [xi, xi+l] even though the data are not. One may

attempt to turn off the monotonicity constraint near strict local extrema to avoid the

above "clipping" phenomenon; however, this makes the method unstable in the sense

that a small change in the data may cause a large change in the interpolant.

In [17], Hyman extended the MP constraint to

]ie I [-3 min (Is[, Itl), 3 min (1_1, Itl)]. (2.22a)

Clearly, the above interval contains the MP interval and unless s or t equals 0, it is

strictly larger. In terms of the ratio r, expression (2.22a) takes the form

g(r) _ I[-3min (1, Irl),3min(1, Irl)], (2.22b)

i.e., the graph of g lies in the shaded region of Fig. 4a.
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2 3

The following limiter function, which was introduced earlier by Van Albada, Van

Leer, and Roberts [25], satisfies condition (2.22):

r 2 +r

g(r) = r2 + 1' (2.23a)

or

s_t + st 2

G(s,t) - s_ + t 2 (2.23b)
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Observethat asr tends to e¢,g(r) tends to 1. It can be shown that for r > 0, the above

limiter lies between the minmod and the harmonic mean limiters. Therefore, it shares

the property of producing curves that are "too flat". On the positive side, adjacent to

discontinuities, this limiter approximates f'(xi) better than any limiter mentioned in

the previous subsection, as shown in the following example.

Let xi = i + 1/2 for i = -3,...,2, and

fi = -5 - xi for zi < O, fi = 5- xi for xi > O; (2.24)

i.e., the data lie on the lines y = -5 - x for x < 0, and y = 5 - x for x > 0. Any

limiter function in the previous subsection gives ]-z = ]0 = 0. The exact solutions are

f'(-1/2) = f'(1/2) = -1. Using the above limiter, one obtains ]-I = j_0 = -72/82

which are much closer to the exact solutions. In the context of conservation laws,

however, this limiter, similar to the minmod, smears discontinuities.

The algorithm corresponding to (2.22a) is obtained by replacing ]i by the median

of ]i,-3min([s[, It]), and 3min([sl, Itl). The result is

]i *-- sgn (]i) min (I]il, 31sl, 31tl). (2.25)

The above algorithm is very practical due to its simplicity and a slight gain of accuracy,

sue [6], [17], [19]. Theoretically, however, it is only as accurate as the MP algorithm:

in the example at the beginning of this subsection where the data lie on a parabola, it

gives the same result, i.e., it still produces only first-order accurate ]i near strict local

extrema. Moreover, it may create oscillations as shown in the next examples.

Let xi = / for i = 0,...,4, and fi = i for i = 0,...,3. Let f4 = k > 4, then the

data are increasing. The quartic through these points and its slope at x2 are (see also

Hyman's fourth-order finite difference formula in [17])

p(x) = x + k_---_4x(x - 1)(x - 2)(x - 3), J/2 -
8 k

12L_
(2.26)

If k = 20, then J_2 = -1, and Hyman's algorithm (2.25) does not change ]2. We have a

strictly negative slope in spite of the fact that the data are strictly increasing. In fact,

even the MP algorithm (2.9) gives an "unrealistic" albeit monotone result of f2 = 0.

Note that in the above example, if one uses the parabolic formula (2.3), then ]2 = 1,

and both the MP and the Hyman algorithms work well in this case. In general, the
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combination of the parabolic formula and Hyman's algorithm may still create unwanted

oscillations, as in example (2.24) where the parabolic formula yields ]-1 = ]0 = 4, and

the Hyman's algorithm then gives .f-1 ]0 = 3. The results are of the wrong sign

compared to the exact solutions.

The above examples, especially (2.26), show that one has to be cautious in ex-

tending the MP interval (2.7) as well as in using higher-order methods to define .fi.

For limiter functions, an extension of the monotonicity constraint for r < 0 can be

obtained as follows: first, the region must contain the negative r-axis; second, due to

the symmetric property (2.11), 9(-1)= 0; third, in example (2.24), ]-1 and ]0 should

be negative, i.e., for -1 < r < 0, g@) should be negative, and for -oo < r < -1,

g(r) should be positive. Together with (2.12), these conditions imply that the graph

of g lies in the region bounded by g = 0, g = 1, g = r, and r = -1, as shown by the

shaded region for v _< 0 in Fig. 4b. For r > 0, the condition is the same as the MP2

condition in the previous subsection. This enlarged monotonicity region is named the

M2 region shown by Fig. 4b. Limiters in this region preserve monotonicity in the sense

that if the data are monotone in [xi, zi+l], then so is the interpolant. This follows

because monotonicity of the data in [xi, xi+l] implies si-1/2, si+l/2, and si+3/2 are of

the same sign. Adjacent to strict local extrema, these limiters do not simply define ]i

as 0; however, they are still only first-order accurate. Two examples of such limiters

are Van Albada's limiter (2.23), and

g(r) = median (1, r,-r- 1)

= 1 + minmod (r - 1,-r - 2),

(2.27)

or

G(s,t) = median(s,t,-s - t)

= t + minmod (s - t,-s - 2t).

Note that for r > 0, the above limiter is identical to the minmod. One can also combine

it for r < 0 with any limiter in subsection 2.2 for r > 0.

Recently, in [6], a second-order accurate constraint for ]i was developed based on

Hyman's algorithm. This method essentially detects whether the value fi is at the left

or the right of a strict local extremum; in each case, a different constraint is enforced.

Like Hyman's method, it may produce derivatives of the wrong sign under extreme
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conditions. In the caseof example(2.24), the results are ]-1 = i0 = 3. As for example

(2.26), the result is identical to that of the MP algorithm, which is "unrealistic": ]_ = 0.

In the next section, we present a systematic approach in which all data points, except

those at the boundaries, are constrained by the same conditions which extend that

of De Boor and Swartz. These extensions produce third-order accurate interpolants,

allow nonmonotone interpolants for nonmonotone data, and behave well in the extreme

conditions of the above examples.

3. Thlrd-order accurate monotone interpolants. To obtain uniform third-

order accuracy, it is logical to consider the parabola Pi(x) = (x,pi(x)) through the

points Fi-1, Fi and Fi+l. Denote the second divided difference by di, i.e.,

di = f[z,-,,_,,z,+d = si+l/2 - s_-1/2 (3.1)
Xi+l -- Xi-1

Then from the Newton formula,

pi+o(z) = fi + si+a/2(x - xi) + di+0(x - xi)(x - xi+l) (3.2)

where 6 = 0 or 6 = 1. If {fi} are third or higher-order samples of a C 3 function f,

then for all x or_[Xi-l,Xi+l],

pi(x) = f(x) + O(h3), p_(x) = f'(x) + O(h2). (3.3)

3.1. Nonoscillatory parabolic interpolation. In the interval [xi, xi+l], even

when the data are monotone, neither Pi nor Pi+l are necessarily monotone. However, a

monotone quadratic Pi+l/2 can be obtained by using Harten and Osher's nonoscillatory

interpolation [15]. We present this method in our geometric framework below. Observe

that the two parabolas Pi, Pi+l, and the line segment FiFi+l have the points Fi and

F,+I in common. Any two of these three curves are either identical or have no other

point in common. Let Pi+l/2 be the curve which lies between the other two, i.e., the

median of the above three curves, see Figs. 5a,b. Note that the equation for FiFi+l is

given by (3.2) with di+e = 0. Let di+l/2 be the median of 0, di, and di+l,

di+ l /2 = minmod (di, di+ 1 ), (3.4)

then the equation for Pi+ll_ is given by (3.2) with 0 = 1/2.
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Figs. 5. The parabolas Pi+l/2.

Before proving the accuracy and monotonicity of Pi+l/2, we review some facts

for the parabola P(x) = (x,p(x)) through Fi, F/+I with second-divided difference

(coefficient of x 2) d:

p(x) = fi + si+l/2(x - xi) + d(x - xi)(x - xi+]),

p'(x) -_ 8i+1/2 + d(2x - xi - Xi+l), (3.5a)

P'(_Ti) _-- "-qi+1/2 31- d(xl - xiq-1), pt(Xi+l) -- Si+1/2 + d(xi+l - xi). (3.5b)

Denote

xi+I/2 = (xi + xi+l)/2, £+1/2 = (fl + fi+l)/2, (3.6)

then the two tangents to the parabola P at Fi and Fi+I intersect the vertical line

x = zi+l/2 at the same point Bi+1/2 - (Xi+l/2,bi+l/2) where

1 2

bi+l/2 = fi+l/2 -- _d(Axi+l/2) • (3.7)

From (3.ha,b), and (3.7), p is monotone in [xi,xi+l] if and only if any one of the

following conditions holds:

Idl < Is/+1121 (3.8a)
-- mxi+l/2 '
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bi+i/ e I[f. (3.8d)

To show accuracy for Pi+l/2, observe that since di+l/2 is the median of 0, di and

di+l, it lies between di and di+l. Equations (3.2) with O = 0, 1, and 1/2 imply that

pi+l/2(z) lies between pi(x) and pi+l(x) for all x. Similarly, equations (3.5a) with

I X I
d = di, di+1/2, and di+l imply Pi+1/2( ) is the median of si+1/2, p_(x), and Pi+l(X);

therefore, p'i+l/2(x) lies between p_(x) and p_+l(x) for all x. As a consequence, it follows

from (3.3) that for all x E [xi, xi+l],

pi+l/2(x) = f(x) + O(ha), p_+l/2(x) = f'(x) + O(h2). (3.9)

We turn now to monotonicity. Suppose the data are monotone in [xi, Xi+I]. It

will be shown that the same is true for Pi+1/2; therefore, (3.8a,b,c,d) hold for Pi+l/2.

Consider for the moment the case fi _ fi+l. By using a linear change of coordinates

as in the proof of Lemma 1, we may assume xl = O, xi+l = 1, and fi = 0, fi+l = 1.

The data are thus increasing, and fi-1 < 0, fi+2 >_ 1. Because si+l/2 = 1, si-1/2 > O,

and xi+l -xi-1 > 1, (3.1) implies di < 1. Similarly, di+l > -1. Since di+l/2 is the

median of 0, di, and di+l,

-1 < di+l/2 < 1.

The above expression and (3.5a) imply

0 < Pi+l/2( )<2 (3.10)

for z E [0, 1]. Consequently, pi+I/2 is strictly increasing in [0, 1]. The case fi = fi+_

is trivial since the quadratic Pi+l/2 reduces to a constant function. This completes the

proof.

Additional conclusions can be drawn if the data are monotone in [zi, xi+l]. Indeed,

we will show that

p__l/2(xi)Pti_l.1/2(Xi) _ O, >__o.

21

(3.11)



In the above proof, since di < 1 and di+l > -1, equations (3.5b) imply

> o, _>o._

The facts that si-l12 > 0 and si+3/2 >_ 0 then imply

p' _l/2(xi) > O, >_O.

Expressions (3.11) follow from the above and (3.10). The case of fi = f_+, is again

trivial.

Fhrthermore, if the mesh is uniform, then in the proof of (3.10), zi+l - xi-1 = 2,

and the monotonicity of the data in [xi, xi+l] implies

Id +x/,I < Is +,/21 (3.12a)
-- 2Axi+112'

, [I 3pi+i/2(x) E I _Si+l/2, _si+l/2 (3.12b)

for all z E [z_,z_+_]. The equal sign in (3.12a) and the closed interval in (3.12b) are

necessary for the case fi = fi+l.

Similar to the definition of si, let

ti = minmod [p'i_l/2(xi),p;+l/2(xi)]. (3.13)

From (3.9), ti approximates f'(xi) to second-order accuracy. Note that the UNO

scheme [15] is defined by setting ]i = ti. Loosely speaking, this scheme favors mono-

tonicity over accuracy by defining ]i to be as close to 0 as possible from the above left

and right slopes. It can also be considered as a high-order extension of the minmod

limiter. In the next subsection, we present more accurate schemes which extend all

limiters. Recall that in the second-order case presented in section 2, limiter functions

simplify the algorithms by simultaneously satisfying the three conditions of symme-

try (2.11), accuracy (2.12), and stability (continuity), together with the condition of

monotonicity (2.13). In the third-order case below, the reverse is true: it is simpler to

separate the former three conditions from the monotonicity condition. Consequently,

for third or higher-order methods, limiters only need to satisfy these three conditions.
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Uniform third-order monotonicity constraints are enforcedin a separatestep. In the

next three subsections,we present three different third-order constraints.

3.2. M3 (monotone third-order) methods. To relax the monotonicity con-

straint of De Boor and Swartz, (2.6) is replaced by

3, [0,38,+1/2, 3' )] (3.14)/i E I [O, 3si+i/2, _Pi+l/2(Xi)] , ]i+l E I _Pi+l/2(Xi+l •

The above condition preserves monotonicity, i.e., if the data are monotone in [xi, Xi-I-1 ],

and (3.14) holds, then the interpolant (2.2) is monotone in [xi, xi+l]. Indeed, by ap-

plying (3.8b,c) to Pi+l/2,

31 3t
_pi+l/2(xl), -_pi+l/2(zi+l) e I[0,3si+1/2]. (3.15)

Therefore, the intervals in (3.14) reduce to those in (2.6), and monotonicity follows

from Lemma 1. Next, expression (2.6 _) is replaced by

3 I , [0,3si+1/2,3 I x,]]iEI [0,3,_i_1/2, _pi_l/2(xi)] ]iEI _Pi+l/2( ')J; (3.14')

or ]i lies in the intersection of the above two intervals. The algorithm can be simplified

by observing that the above intersection contains the interval I [0, 3si, 3ti] since 37ti lies

in each of the intervals in (3.14'). Consequently, the MP constraint (2.7) is replaced by

the following condition, which implies (3.14'),

lie I [0,3ai,3 ti] . (3.16)

Observe that if the data are monotone in [xi-_, xi] and [xi, xi+l], then the above interval

is identical to the MP interval. If the data are no longer monotone in [Xi--l,Xi] or

[zi, xi+l], however, it may be strictly larger. The two end points of the interval in (3.16)

can be obtained by taking the maximum and the minimum of the three arguments.

Further simplification is made possible by showing that si and ti are of the same sign.

! ! XIndeed, pi_l/2(xi) is the median ofsi-l/2, p_(xi), and p__a(xi); Pi+l/2(i) is the median

of si+l/2, p_(xi), and p_+l(xi); consequently,

p'i_,/2(xi) e I[s,-1/2,p_(xi)], p'i+i/2(zi) E I[si+_/2,p_(xi)]. (3.17)
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Becausep_(xi) 6 I [si-1/2, si+l/2] by (2.3), the above expressions imply

c

t X" ¢Since ti = median (O, pi_l/2(,),pi+l/2(xi)), and si = median(O, si-1/2, si+l/2),

x[0,td 3 z[0,sd.

Consequently, si and ti are of the same sign, and if ti = O, then si = O. Expression

(3.16), therefore, is identical to

], 6 I [O, sgn(ti)max(3]si,, 3 ]t,[)] . (3.16')

Note that if ti = 0, it does not matter whether sgn(ti) is defined as -1, 0, or 1 in the

above expression since the interval reduces to the point {0}.

We summarize the resulting algorithm below.

Theorem 1. Let si+l/2, di be the first and second divided differences as in (2.1),

(3.1). Let si, di+l/2 be the corresponding minmod defined by (2.8) and (3.4). Recall

the slopes of the parabolas (3.5b) and expression (3.13),

p__l/2(Xi) -" Si_l/2 "[" di_l/2(x i -- Xi_l ) ,

t XPi+l12( i) = si+I/2 + di+_/_(zi - zi+l),

I I
ti = minmod [pi_l/2(zi),pi+l/2(xi)].

In addition, for m + 2 < i < n - 2, let the original ]_ be defined by any continuous

limiter function with property (2.12) applied to the left and right slopes p'__l/2(xi) and

I X"
Pi+l/2( *)' e.g., the arithmetic mean,

1 t t

], = [p,_,/2(x,)+ p,+,/2(x,)].

The original ]i can also be defined by any second or higher-order formula for the

derivative. Let the final ]i be def'med by

t_,_ = sgn(ti)max 31s_l,_lt, I , (3.19a)
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fi *-- minmod (]i, tmax). (3.19b)

Then the algorithm is stable. It preserves monotonicity, i.e., if the data are monotone

in [Xi,Zi+I] for any i, m -_- 2 < i < n - 3, then so is the interpolant. Furthermore, if

f E C 3, and {fi} are third or higher-order accurate, the [inal {.fi} are second-order;

consequently, the interpolant (2.2) is third-order.

The above method is named M3-A (A stands for average) if (3.18) is used. The

proof is now straightforward. First, stability follows since each of the above equations

is stable. Next, monotonicity is preserved since (3.19a,b) imply (3.16), which in turn

implies (3.14') and (3.14). As for accuracy, observe that the original ]i defined by

(3.18) or by a limiter with property (2.12) is second-order accurate. The interval in

(3.16 I) contains the value ti, which is also second-order accurate. Any value which

lies between the original ]i and ti is therefore second-order, in particular, the final ]i

defined by (3.19a,b).

Before presenting the next method, note the following. By considering the case

p__l/2(xi) and p_i+i/2(xi) of the same sign or of opposite sign, the M3-A method (3.18),

(3.19a,b) can be simplified to:

]i = sgn (ti) min

If the "Superbee" limiter is

= sgn (ti) min [max],

Observe that in the above

IPi-1/ (i) + pi+i/2(zi)l,max \31sil, 5 •

used, the resulting M3-B method can be expressed as

, (lp + /2(x,)l),max 31s,l, lt,I • (3.20)

theorem, if one sets di = 0 for all i, then the M3-A and

M3-B methods respectively reduce to the average and "Superbee" limiters.

The constraint (3.19a,b) has a five point stencil from i - 2 to i + 2. By using the

quartic though these five data points (see formula (4.21)), one can obtain a fourth-

order accurate ]i. As shown in example (2.26), such ]i may have the wrong sign. This

problem can be solved by enforcing the following condition which is a higher-order

extension of the accuracy condition (2.12): ]i lies between p__l/2(xi) and p_+l/2(zi),

or

]i median ' _(yi,pi_,/2(xi),pi+,/2(xi)). (3.21)
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The final ]i is then obtained by (3.19a,b). This method is named M3-quartic.

If the original ]i is defined by a limiter function which is bounded above by 3/2,

then (3.19a,b) are redundant because the original ]_ satisfies (3.16) a priori.

If the data represent a discontinuous function, one can replace (3.18) and (3.19a,b)

by applying Van Albada's limiter (2.23) to p__l/2(xi), p_+i/2(zi), and the resulting M3-

V method is more accurate near discontinuities. (Incidentally, the graph of this limiter

has a V shape.) It is also highly accurate near the smooth parts of the data because

the limiter (2.23) satisfies g'(1) = 1/2. As for monotonicity, suppose that the data

are monotone in [xi, xi+_], then from (3.11), and the fact that this limiter is bounded

above by g(1 + V_) = (1 + v/2)/2 < 3/2, one concludes that condition (3.16)is satisfied

at xi and xi+l. Consequently, the M3-V method preserves monotonicity even though

(3.19a,b) are omitted. Notice that with this method, condition (3.16) may not hold

t X" tif Pi-1/_( ')Pi+1/2(xi) < 0; however, an extension of (3.16), which is similar to the

extension from the MP2 (Fig. 2c) to the M2 (Fig. 4b) constraint, holds in this case.

Lastly, as in Theorem 1, accuracy and stability are trivial.

If the mesh is uniform, and the original ]i is defined by a limiter function which is

bounded above by 2, e.g., the harmonic mean limiter, then it follows from (3.12b) that

(3.19a,b) are redundant because the original ]_ satisfies (3.16) a priori.

The algorithm of the above theorem is an extension of the author's SONIC schemes

developed for conservation laws [16]. The results there show that the algorithm im-

proves accuracy not only near strict local extrema, but also elsewhere (see subsection

3.5 below). Note that there are some similarities in the techniques of the SONIC

schemes and (independently) Yang's recent artificial compression by slope modification

[28]. The concepts, however, are very different: Yang's method modifies ]_ = ti, the

slopes of the UNO scheme defined in (3.13), by an adjustable factor obtained from

numerical experiments; our methods define constraints which can be applied to any

high-order accurate derivative.

3.3. MS3 (monotone simple third-order) constraint. To develop the sec-

ond third-order constraint, we first define the minmod function with more than two

arguments. Let zl,..., zk be real numbers, and

= = max(z1,... ,zk).
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Let minmod(zl,...,zk) be the function which returns the smallest argument if all

arguments are positive, the largest if they are all negative, and 0 otherwise. Then

minmod (zl, ••., zk) = minmod (a, fl).

The minmod function can also be expressed as

minmod(zl,... ,zk) = A min(Izl[,..., ]zk[)

where

1 1 1

A = 5[sgn (zl) + sgn (z2)] _[sgn (zl) + sgn (z3)] ... _[sgn (zl) + sgn (z,)]

1 1 1

= 5[sgn (zl) + sgn (z2)] 5[sgn (z2) + sgn (z3)]... 5[sgn (zk_1) + sgn (zk)].

Observe that in the above expression for the minmod function, if zi - 0, it does not

matter whether sgn (zi) is defined as -1, 0, or 1. One can also take successive minmods

to arrive at the same result, e.g.,

minmod (zl, z2, z3) = minmod [minmod (z_, z2), z3].

Notice that if k = 2, these definitions are consistent with those in section 2. The case

of three arguments can be applied to the MP algorithm (2.9).

The second method to enlarge the MP interval is similar to the first method, except

ti in (3.16) is replaced by ui:

where

]i E I [O,3si,3ui] (3.22)

ui = minmod [p_(xi),P__l(Xi),P_+l(Xi)]. (3.23)

Expression (3.22) can be simplified by showing that si, ui, and p_(xi) are of the same

sign. Indeed, since p_(z_) lies in the interval I [si-1/2, s_+_/2],

x[0,s,]

This implies s; and p_(xi) are of the same sign, and if p_(xi) = O, then s; -- 0. Similar

conclusions hold for ui and p_(xi). Consequently,

3lui,) ] (3.22')I[0,3si, 3u,] = I[O, sgn(p_(x,))max(3lsi,,_ .

The corresponding algorithm is summarized below.
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Corollary 1. Let si+1/2, di be the first and second divided differences as in (2.I),

(3.1). Let {p_(xi),pLl(x_),p_+l(x_)}be the slovesof the p_abol_ given by (S.hb).
Let si and ui be the corresponding minmod defined by (2.8) and (3.23). Let ]i be any

second, or higher-order approximation off_(xi), and for m + 2 < i < n - 2, let the t_nM

fi be defined by

tm.x = sgn (p:(xi)) max (3lsil, _luil) ,

]_ _ minmod (]_, tmax).

Then the algorithm is stable and preserves monotonicity, and the interpolant (2.2) is

third-order accurate.

The stability of the above method is trivial. The proof of accuracy is similar to

that of Theorem 1 with the observation that ui is second-order accurate. Next, it will

be shown that

I [0,3si,3ui] C I [0,3si,3 ti] ; (3.24)

consequently, monotonicity follows. Indeed, since p_i_i/2(xi) e I[p_(xi),p__l(xi)], and
I !

p'i+i/2(xi) e I[pi(xi),pi+l(xi)],

therefore, I [0, t_] D I [0, u_], and (3.24) holds. This completes the proof.

The above algorithm can be simplified further by defining

ui min(Ip_(xi)l, '- Ipi_l(zi)l, Ip_+_(xi)l)

instead of (3.23), and the same conclusions still hold. A drawback of this simplification

is that inexample (2.24), if the original .fi is defined by p_(x,), then the results ]-1 =

f0 = 3 are of the wrong sign.

Notice that due to (3.24), the method of the above corollary is not as general as

that of Theorem 1. The next method, however, is more general than the above two.

3.4. MG3 (monotone general third-order) constraint. Using the four data

points Fi-1, Fi, Fi+l and F/+2, the monotonicity-preserving parabola Pi+l/2 defined

in subsection 3.1 is, loosely speaking, "closest" to the straight line segment FiFi+l. We
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begin this subsectionby defining a monotonicity-preserving parabola P/+1/2 which is

"furthest" from the line segment. Denote Fi+l/2 = (xi+l/2, fi+l/2) where xi+l/2 and

fi+l/2 are defined by (3.6). Let Fi+l/2L = (xi+l/2,fiL+l/2) (or Fi+l/2)n be the intersection

of the line Fi-lFi (or F/+]F/+2) and the vertical line x = xi+l/2 as shown in Fig. 6,

then

1 n 1
fiL+l/2 = fi -I- _si-1/2Azi+l/2, fi+l/2 ---- fi+l -- _si+3/2Axi+I/2 (3.25)

where the superscripts L and R stand for extrapolation from left and right, respectively.
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Fig. 6. The parabola/5i+1/2.

Let/3L (or pn) be the parabola through Fi, Fi+l, whose tangent at Fi (or Fi+l) is the

line Fi-lFi (or Fi+lFi+2). Similar to the definition of Pi+]/2, let Pi+l/2 be the median

of the parabolas pL, pn, and the line segment FiFi+l. Observe that d L, d n, which

are the second divided differences of pL, pn, can be obtained by expressing the slopes

of the tangents Fi-lFi, Fi+lFi+2 in the form (3.5b),

dL _ si+l/2 - si-1/2 dn = si+3/_ - si+l/_ (3.26)
Axi+l/2 ' Axi+l/2

Let

di+l/2 = minmod (d L, dR),

then di+_/2 is the second divided difference of Pi+l/2, and from (3.26),

_i+_/2

di+l/2- Azi+l/_

(3.27a)

(3.27b)
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where

'_i+1/2 "-- minmod (si+l/2 - _qi-1/2,8i+3/2 - 8i+1/2). (3.28)

Observe that by (3.1) and (3.26), di lies between 0 and dL; di+l lies between 0 and dR;

consequently, by (3.4) and (3.27a),

di+ll2 E I [0, di+l12]. (3.29)

Note that if Pi+l/2 has a strict local extremum in (xi,zi+l), then the same is true for

Pi+l/2.

Next, define

M L R
fi+l/2 = median(fi+l/2, fi+l/2, fi+l/2), (3.30)

then F M1/2 -- (xi+l/2, M-- fi+l/2) is the intersection of the tangents to Pi+l/2 at Fi and

Fi+l. The slopes of these tangents are given by (3.5b),

P_+l/2(xi) = si+_/2 - $i+_/2, (3.31a)

P_+l/2(xi+l) = si+l/2 + si+l/2. (3.31b)

Using definition (3.30), observe that if fi_l/2 is a strict local maximum, i.e., fill�2 > fi

and fi+l/2M > f_+_, then from (3.25), the data {fi} have a strict local maximum in

[Xi, Xi+l] , i.e.,

fi > fi-1, and fi+l > fi+2, (3.32)

see Fig. 6. A similar statement holds for the minimum. Consequently, if f_+1/2 is a

strict local extremum, then the data {fi} have a strict local extremum in [xi, xi+_]. In

particular, if the data are monotone in [xi,xi+i], then Mfi+u2 is not a strict local ex-

tremum, i.e., riM+l�2 lies between fi and fi+l. Therefore, by (3.8d),/5i+1/2 is monotone

in [xi,xi+l], and by (3.8b,c),

p_+l/2(xi) e I[0,2Si+l/2], ffli+l/2(Xi+l ) e I[0,2si+1/2]. (3.33)

Similar to (3.14), (3.14'), we can now relax the constraints (2.6) and (2.6') to

e x , and ],+1e X ; (3.34)
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]i E I [O,3Si_l/2,-_i_l/2(zi)] , and ]_ I 3_.,

The intersection of the two intervals in (3.34'), denoted by [_, _i], is nonempty (con-

tains O) and can be obtained by

31
a' = min [O,3.s,-112, _P,+l/2(z,)] ,

37
aiR = min [0,3si+l/_, _pi+l/2(xi)] , _iR

c_i = max (aL, a/R),

3_ 4[0 1
= max 0,3si+l/2,_pi+l/_(xi , (3.35b)

fli = min(fl_,_R). (3.35c)

Notice that a simplification similar to (3.16) does not work in this case because it may

cause a loss of accuracy. To bring ]:_ into the interval [ai, _i], again we replace ]i by

median ( f i, a i, fli ):

/i _ ]i + minmod (ai- .fi,fli - ]i). (3.36)

Next, we prove that the above algorithm gives a second-order accurate ]i ifthe

originalJriiscalculated by a second or higher-order method. In fact,we willshow that

[Oti,t_i] D I[0,3si+1/2, _ti], (3.37)

which implies ti E [c_i, fli], and accuracy follows as in the proof of Theorem 1. To show

(3.37), it suffices to show that the intervals in (3.34) contain the corresponding ones in

(3.14), i.e.,

3 , (xi)] D I 3 ,l [O, 3Si+l/2, _,i+l/2 [O, 3si+l/2,-_Pi+l/2(xi)] , (3.38a)

3 , [0, 3 , )]. (3.38b)

Indeed, fl'om (3.29),

pli+l/2(Xi ) e flsi+l/2,Pti+l/2(Xi)], pti+l/2(Xi+l ) e I[si+,/2,pti+v2(Xi+l)], (3.39)

which imply (3.38a,b). This completes the proof of accuracy.

The above method is summarized below.
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Theorem 2. Let o_i, fli be defined as in (3.35a, b,c) using (3.28), (3.31a, b), and let the

original {]i) be calculated by (2.3) or some higher-order method for m + 2 < i < n - 2.

Let the finaI {fi) be obtained by (3.36). Then the algorithm is stable and monotonicity-

preserving in [xi,xi+l], m+2 < i < n-3. Moreover, if f e C s, and {fi} are

_hlrd or higher-order accurate, then the final {]i} are second-order; consequently, the

interpolant (2.2) is third-order.

We conclude this subsection with the following remarks:

Observe that a simplification similar to (3.16) may cause a loss of accuracy since

-I X -Iin spite of (3.39), the interval I[O, minmod(Pi_l/2( i),pi+l/2(xi))] may not contain

Due to (3.37), the above method is more general than the previous two. As will

be shown in the next subsection, the algorithm still provides "plenty of room" for fi

near strict local extrema if the coefficients 3/2 in expression (3.35a,b) are replaced by

1.

Suppose di+l/2 is an accurate, second divided difference obtained by evaluating,

e.g., the second derivative at x = xi+l/2 of the cubic through Fi-1, Fi, Fi+l, and Fi+2.

Then, in order that the corresponding parabola/5i+1/2 is monotonicity-preserving, one

replaces di+l/2 by minmod (di+l/2,di+l/2). Note that Theorem 1 with di+i/2 replaced

by di+l/2 is still valid.

In practice, one can often avoid the calculations in the above theorem by using

one of the following two tests:

1. Checking if ]i lies in the MP interval by testing if

- < o.

If this condition holds, one moves on to the next point. Otherwise, one goes

through the calculations of the above theorem.

2. Checking if the data have a strict local extremum in [xi, xi+l] by testing if

(fi - fi-1)(fi+l - fi+_) > O.

If the data have neither a strict local extremum in [zi-a, xi], nor one in [xi, Xi+I],

we simply use the MP algorithm (2.9).
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3.5. More on the accuracy of third-order methods. Observe that if the

data are on a parabola, then any of the above three methods M3, MS3, and MG3

reproduces the parabola (if the original {]i} are calculated by (2.3) for the last two

methods). However, if the data are on a cubic, these methods may not reproduce the

cubic even if the original {]i} are exact. We show an example of this case below.

Let xi = i for i = -2,..., 2, and

/-1=/0=/1=0, /-2=-6, and /2=6, (3.4o)

i.e., the data are on the cubic f(x) = x 3 - x. Clearly, the parabola P0 through F-l,

F0, and FI is identical to the x-axis. Since the interval [s0, fl0] reduces to {0}, any

of the above three algorithms yields ]0 = 0. The exact solution is if(0) = -1, and

the algorithms do not reproduce the cubic. If h is small enough, however, the MG3

constraint reproduces the above cubic as shown below.

More generally, suppose the mesh is uniform, the data are fourth or higher-order

samples of a C 4 function f, and the original {]i} are third or higher-order accurate,

then when do the above third-order constraints cause a loss of fourth-order accuracy?

As shown at the end of subsection 2.1, at the part where fr(x) _ O, the MP algorithm,

and therefore all third-order algorithms, does not alter )/i provided h is small enough;

consequently, accuracy is preserved. Next, we show that adjacent to a strict local

extremum at x = x* where f'(x*) ¢ O, the M3 and MS3 constraints are essentially

identical, and they may yield only second-order accurate ]i. The MG3 constraint, on

the other hand, does not alter ]i in this case, and thus, preserves accuracy. Indeed,

for any xi, after a linear change of coordinates, we may assume xi -- 0, and the Taylor

series expansion of the exact solution at x = xi is of the form

/(z) = sx + dz 2 + ez 3 + O(h*). (3.41)

Higher-order terms will be omitted below when there is no ambiguity. By evaluating

fi-2,... ,fi+2, and using (2.1), (3.1), and (3.5b),

si-3/2 = s - 3dh + 7eh _, si+3/_ = s + 3dh + 7eh 2, (3.42a)

3i_1/2 "-- .S -- dh + eh _, ,Si+I/2 = s + dh + eh 2, (3.42b)
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di-1 = d- 3eh, dl = d + O(h2), di+l = d + 3eh, (3.43)

p__l(Xi) = ,_ -- 2eh 2, p_(xi) = s + eh 2, p_+l(Xi) = s - 2eh 2. (3.44)

Since f"(x*) _ O, in a small enough neighborhood of x*, we may assume d _ 0. The

following equations (3.45-50) only use the fact that d _ 0. Suppose h is small enough

so that

[d[ > 3lelh.

If de >_ O, then from (3.4), (3.5b), (3.27b), and (3.31a,b),

di_l/2 -" d - 3eh,

p__l/2(Xi) = 8 -- 2eh 2,

di-1/2 = 2d- 6eh,

-4 XPi-1/_( i) = s + dh - 5eh 2,

Note that since the mesh is uniform, di+l/2 = 2di+1/2. If de < 0, then

(3.45)

di+l/2 -- d, (3.46)

p_+,/2(xi) = s + eh 2, (3.47)

di+,/2 = 2d. (3.48)

/5'i+,/2(xi ) = s - dh + eh 2. (3.49)

di_l/2 = d,

p'i_l/2(xi) = s + eh 2,

di-,12 = 2d,

_-4 X
Pi--1/2( i) -- S "4- dh + eh _,

di+l/2 = d + 3eh,

Pi+l/2(Xi) = 8 -- 2eh 2,

di+l/2 = 2d + 6eh.

p'i+l/2(xi) = s - dh - 5eh 2.

(3.46')

(3.47')

(3.48')

(3.49')

From (3.44), (3.47), and (3.47'), the M3 and the MS3 constraints are identical up to

O(h3):

ti = ui = minmod (s + eh 2, s - 2eh2). (3.50)

They may yield only second-order accurate ]i adjacent to a strict local extremum

because of the following reasoning: if e _ O, and s E I [-eh 2, 2eh 2] such that s is

strictly O(h2), e.g., s = eh _, then ti = ui = 0 by (3.50). By (3.45), Id[h > 31elh 2.

Equations (3.42b) then imply sl = 0. Consequently, the final ]i is equal to 0 by either

of these two methods, and the error is O(h2). Note that if ]s I > 61elh 2, then the M3

and MS3 constraints preserve high-order accuracy since they do not alter the original
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]i due to (3.50). A loss of fourth-order accuracy, therefore, may occur only in a small

region around a strict local extremum whose length is O(h2).

On the contrary, the MG3 constraint preserves accuracy: if h is small enough, then

up to O(h2), the interval [ai,/3i] of the MG3 constraint defined in (3.35a,b,c) contains

z [s - dh, s + dh] due to (3.42b), (3.49), and (3.49'). Since d _ 0, this constraint does

not alter the original ]i = s + O(h3). The MG3 constraint (and therefore, all third-

order constraints), however, can cause a loss of accuracy near _ where f'(_) = 0, and

f"(_) = 0, as shown in the following example, see also [7].

Let the data be on the cubic f(x) = x a, and let the mesh be uniform with xi-1 -

-e, zi = 2e where e > 0. It follows that

fi-I = --e3, fi = 8e3, fi+l = 125e3.

Since the data are increasing, the interval [ai,fli] reduces to [0,3si] = [0, 9e_]. The

exact solution, f'(xi) = 12e 2, lies outside this interval, and the final /i has error

0(_ _) = O(h_).

We conclude this section by comparing the accuracy of ]i defined by different

third-order methods. Observe that the (lowest-order) error of the UNO scheme (the

h 2 term of [ti- f'(xi)l)lies between [eh2[ and 12eh2[ by (3.50). The error of the M3-B

method also shares this property due to its definition, (3.47), and (3.47'). The parabolic

formula defined by ]i = p_(xi) has error [eh_[; consequently, it is more accurate than

the UNO and the M3-B methods. Away from strict local extrema, the error of the

M3-A method is [eh2/2[, which is roughly less than half that of the UNO, the M3-B,

or the parabolic methods. Adjacent to strict local extrema, the error is at most [2eh 21.

Notice that one cannot eliminate the second-order error term by a limiter function due

to (3.47) and (3.47'). However, this term can be eliminated by using (3.44):

1 t ,

]i -- "_ [4p_(xi) + pi_,(xi) -t- pi+,(xi)] •

In fact, if the mesh is uniform, the above formula is identical to the quartic formula;

consequently, the error is O(h4). In this case, the M3-quartic method consists of the

above formlfla followed by (3.21) and then (3.19a,b). It yields a fourth-order accurate ]i

except at strict local extrema and inflection points, where it may degenerate to second-

order. At inflection points, the loss of accuracy is caused by (3.21), and at strict local

extrema, by (3.19a,b).
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In the next section, we extend the monotonicity intervals further and derive fourth-

order accurate algorithms which reproduce a cubic when the data lie on one.

4. Fourth-order accurate monotone interpolants. There are three main

problems in developing fourth-order monotone interpolants which reproduce a cubic

when the data are on one. First, example (3.40) shows that there can be monotone

data which lie on a nonmonotone cubic. If the interpolant reproduces the cubic, it

cannot preserve monotonicity as defined in section 2. Therefore, one has to modify the

definition of monotonicity. Next, second-order accurate ]/ can be obtained by using

formula (2.3), which has a three point stencil consisting of i - 1, i, and i + 1. For

third-order accurate ]i, one has to add one more point to the above stencil, and to

preserve symmetry, the stencil is enlarged to five points from i - 2 to i + 2. If ], is

calculated using the quartic through these five data points, it can be of the wrong sign

as shown in example (2.26). The second problem is thus to define the original ]i to

third-order accuracy. The final problem is to enlarge the monotonicity interval.

4.1. Nonoscillatory cubic interpolation. To solve the above problems, we

introduce the cubics (ti+l/2(x) defined for xi _< x _< x,+l whose graphs {0i+l/2(x) =

(x,t_i+l/2(x))} stay "close" to the straight line segments FiFi+1 so that they do not

create unwanted oscillations. These cubics can be considered as fourth-order extensions

of the nonoscillatory parabolic interpolant Pi+l/2 defined in subsection 3.1. Concep-

tually, our cubics are somewhat similar to those of the ENO schemes [14] which were

developed for conservation laws. The key difference is that the ENO cubic interpolation

is unstable due to a switch which decides whether the stencil is enlarged to the left or

the right. Our methods are stable because they employ the median function as shown

below.

Let qi+l/2(x) be the cubic defined by the four points F_-I, Fi, F,+I, Fi+2, and let

ei+l/2 be the third-divided difference of {fi},

di+l - di (4.1)
ei+l/2 = f[x,_l,_,,x_+t,r,+21 = xi+2 - xi-i "

From the Newton formula,

qi-1/2(x) = pi(x) + ei-1/2(x - xi-l)(x - xi)(x - xi+l), (4.2a)
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qi+l/2(x) = pi(x) + ei+l/2(x - xi-1)(x - xi)(x - xi+l), (4.2b)

where Pi is defined in (3.2). Rewrite (4.2a) with index i replaced by i + 1,

qi+l/2(X) -- Pi+l(X) "}- ei+l/2(x -- Xi)(x -- Xi+l)(X -- xi+2). (4.2c)

If {f_} are fourth or higher-order samples of a C 4 function f, then for all x E [x_-l, x_+_],

qi+l/2(x) = f(x) + O(h4), q_+,/2(z) = f'(x) + O(h3). (4.3)

In the interval [Zi, Xi+l] , the cubic Qi+l/2 going through Fi, Fi+l is defined by

the derivatives (t[+l/2(xi) and _+1/2(xi+1). We present two different methods to define

Oi+l/2.

For the first method, in the interval [xi-1, Xi+l], consider the three curves Qi-1/2,

Pi and Qi+l/_, which go through the points Fi-1, Fi and Fi+l. Any two of these curves

are either identical or have no other point in common. Let Qi be the curve which lies

between the other two, and let

ei = minmod (ei-1/_, ei+l/2). (4.4)

From (4.2a,b), and (4.4), the equation for Qi can be expressed as

qi(x) = pi(x) + ei(x - xi-a)(x - xi)(x - xi+l). (4.5)

Upon differentiating the above equation,

q[(2ri__l) : p_(Xi__l) "3I- ei(xi_ 1 -- Xi)(Ti_ 1 -- xid.1) , (4.6a)

q_(x_)= p_(x_)+ e,(_ - x,-1)(_i - x_+l), (46b)

q_(_+_)= p_(_,+l)+ e_(_+_- ___)(x_+_- _i). (4.6e)

Obscrve that in the interval [xi, xi+l], among the two cubics Qi, Qi+l and the straight

line segment FiFi+l, there may not be a median curve as in the case of the parabolas

Pi, Pi+l and FiFi+l shown in the previous section. However, one can take the median

of the derivatives to define qi+l/2,

(7_+_/2(z_) = median [s_+1/2, q_(x_), q_+_(x_)]. (4.7)
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Using (3.5b) and (4.6), equation (4.7) and (4.7) with xi replaced by xi+l imply

_li+l/2(xi) = si+,/2 -Axi+l/2 minmod [di+ei(xi-xi-1), di+l +ei+,(xi- xi+2)], (4.8a)

41+1/2(xi+1) = si+l/2 + Axi+i/2 minmod [di + ei(xi+l - xi-1), di+x + ei+l(xi+l - xi+2)].

(4.sb)

Remark that if di and di+l are of the same sign, then the cubic Q_+1/2 is the

median of the three curves Qi, Qi+l and FiFi+l. To show this, observe first that in

the interval [xi, xi+l], the cubic Qi+l/2 lles between the two parabolas Pi and Pi+l for

arbitrary di, di+l. Indeed, by differentiating (4.2b,c),

q_+I/_(xi)= pS(xi)+ e_+,/_(x_- ___)(_ - _i+_),
(4.9)

= p_+_(_i)+ ei+l/2(*i- _i+l)(Z_- _i+2).

Since (xi - xi-1)(zi - xi+2) < O, equations (4.9) imply

[qi+l/2(Xi)-- t t --' pi(xi)l[qi+l/2(xi) p_+l(Xi)] <__0,

or

[v_(_),p_+,(_,)]. (4.10)ql+l/2(x_)e I '

A similar statement with xi replaced by xi+l holds. Because any two of the three

curves Qi+l/2, Pi, and Pi+l are either identical or they do not intersect in (xi,xi+l),

Qi+l/2 lies between Pi and Pi+l, see Fig. 7. Next, since Qi is the median of Qi-1/2,

Qi+l/2 and Pi, it lies between Qi+l/2 and Pi. Similarly, Qi+l lies between Qi+l/2 and

Pi+l. Thus if 0 < di <_ di+l, or 0 > di >_ di+l as in Fig. 7, the parabola Pi is closer to

F_Fi+I than P,+I and Qi+l/2 is identical to Qi. A similar conclusion holds if di+_ lies

between 0 and di. If d_ and di+l are of opposite sign, however, the cubic (2i+_/2 can

be different from any of the six curves Qi-_/2, Qi+l/2, Qi+3/2, Pi, Pi+_, and FiFi+l

which are used to define it.

The above proof also shows that definition (4.7) is equivalent to

qli+l/2(Xi) -_ median [p'i+,/2 (xi), q_(xi), q_+, (xi)]

where si+]/2 in (4.7) is replaced by p_i+]/_(xi) defined in (3.5b). Our next definition

resembles (3.13) and will be used to extend the monotonicity interval,

t'i minmod qi+I/2(xi)].= E-,/_(_i), "' (4.11)
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Fig. 7. Qi+l/2 lies between Pi and Pi+l.

^# X"For the second method, O,i+l/_ is again defined by the two slopes qi+l/2(:),

where
I I

/Zmirt --- min[qi_l/2(xi),qi+l/2(xi), 'qi+s/2(xi)],

[' ' , )]Urnax "- max qi_l/2(xi),qi+l/2(xi),qi+3/2(xi ,
(4.12)

_tI+l/2(xi) = median (Si+l/2, '/-/mill, _/nl&x),

= Si+1/2 + minmod (Umin - 8i+1/2, Umax -- Si+l/2).

Similarly, _'_+112(x_+1) is defined by replacing x_ by zi+, in the above equations. Ob-

serve that

I[q_(xi),q_+l(xi)] C I[q__l/2(xi),q'i+l/2(xi),q_+3/2(xi)],

consequently, from definitions (4.7) and (4.12),

I[si+il2,g'i+il2(Zi)] D I[si+il2,01+,12(zi)], (4.13)

~t X ^1 X ^# Xi.e., qi+l/2(i) and qi+l/2(i) are on the same side relative to si+1/2 and qi+l/2(i) is

~1 X"closer to si+1/2 than qi+l/2( ,)" Finally, as in the first method,

{i " ^t= mmmod [qi-1/2(xi), 01i+1/2(Xi )1" (4.14)

Notice that if the data are fourth-order accurate, then so are {Qi+l/2} defined by

either of the above two methods. Because these cubics stay "close" to the straight line
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segmentsFiFi+l, they do not create unwanted oscillations. However, the derivatives

of these cubics are discontinuous at {xi}; therefore, they are only C °. We use these

cubics to define accurate, monotone C 1 interpolants below.

4.2. M4 (monotone fourth-order) methods. First, we modify the defini-

tion of monotonicity. The data are q.monotone in [xi,xi+l] if they are monotone in

[xi,xi+l], and

4_+1/2(Xi) e I[0, 33i+1/2], 41+1/2(Xi+1) • I [0,3Si+1/2] (4.15)

" • -' x defined by (4.8). Using Lemma 1, (4.15) implies thatwhere qi+l/2(x,), qi+l/2(i+l) are

Q/+1/2 is monotone in [zi, xi+l]. Observe that if the data are q-monotone, then (4.15)

-' x. -t x- -t x ^' x. is also satisfied duewith qi+l/2(,), qi+l/2(,+1) replaced by qi+l/2(,), qi+l/2(,+1)

to (4.13).

Next, the original ]i is defined by applying any continuous limiter function with

property (2.12) to the left and right slopes 41_1/2(xi) and 4_+i/_(xi), e.g., the arithmetic

mean as in (3.18),

/i=_l [O:_l/2(xi ) + O:+l12(xi) ] . (4.16)

The corresponding method is named M4-A. If the data represent a discontinuous func-

tion, the Van Albada's limiter (2.23), which results in the M4-V method, is preferred.

Similar to the M3-V method, the monotonicity algorithm (4.20) below is omitted for

the M4-V method.

Finally, we relax the monotonicity constraint (3.14) to

]i • I O,3si+l/2,_pi+l/2(xi),Ol+,/2(xi) , (4.17a)

]i+l • I 0, 3si+1/2, _pi+l/2(xi+l),_l+l/2(xi+l) • (4.17b)

More generally, we can extend any constraint of section 3. For simplicity, the following

constraint extends (3.16),

e z 0,3 ,i, (4.18)

where ti, ti are defined by (3.13) and (4.11).

The fourth-order methods are summarized below.
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Theorem 3. Let Si+l/2, di, el+l�2 be respectively the first, second, and third di-

vided differences; 1et si, di+l/_, ei be the corresponding minmod as in (2.8), (3.4), and

I I X ~1(4.4). Let {pi_l/2(xi), Pi+l/2( i)} and ti be given by (3.5b) and (3.13); let qi+l/2(xi),

and be definedby either (4.Sa,b) and (4.I1), or (4.12)and (4.14). rn
addition, let ]_ be defined by a continuous 1imiter function with property (2.12), e.g.,

the average (4.16), or by any third or hlgher-order formula for the derivative. Let the

flnal ]i be defined by

tmi. = rain , (4.193)

tm_x = max 0,3si, _ti, ti , (4.19b)

fi _ .¢i + minmod (train - fi, tm_x -- J_i). (4.20)

Then the algorithm is stable. Moreover, ff the data are q-monotone in [zi, zi+l] for

any i, m + 3 < i < n - 4, then the interpolant (2.2) is monotone in [x_, :_+_]. As for

accuracy, if f e C 4, and {fi} are fourth or higher-order accurate, the f_nal {]i) are

third-order; consequently, the interpolant (2.2) is fourth-order.

The proof of stability is again straightforward. To prove accuracy, observe that

the second half of (4.3)implies q_-a/2, q_-1/2, q_+,/2, and q_+3/2 at z - :ei approx-

imate the true derivative f'(xi) to O(h3). Therefore, the same is true for q_-l, q_,

q_+l because their definitions use the median function. It follows that q_-1/2, q_+1/2,

and then t'i, are third-order accurate. Since the original .fi is defined a limiter func-

tion with property (2.12), it lies between __l/2(xi) and _+l/2(xi), and thus is also

third-order. Because the final .fi by (4.20) lies between the original fi and t'i, the

accuracy claim follows. Next, suppose the data are q-monotone in [xi,xi+l], then

(t_+_/2(zi) E I[0,33i+1/2]. Definition (4.11) implies t'i E I[O,?71+l/_(zi)]. Consequently,

i'i E I [0, 33i+1/2]. Since q-monotonicity implies that the data are monotone in [xi, zi+l],

it follows that 3_t_ E I[0,33i+_/2]. The interval I[0,3s_,_ti,3 ti] is thus contained in

I [0, 33_+1/2]. Expression (4.18) then implies f_ E I [0, 33_+_/2]. Similar arguments hold

for fi+l, and the monotonicity of the interpolant (2.2) follows from Lemma 1. This

completes the proof.

Note that instead of the average (4.16), one can use the following fourth-order
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quartic formula to define the original ]i:

/i = P_(Xi) "Jr (Xi- Xi--1)( xi -- Xi+ 1) ei--l[2(Xi+2 -- Xi) "_- ei+l/2(Xi -- Xi--2) (4.21)
Xi+ 2 -- Xi_ 2

As in (3.21), to avoid derivatives of the wrong sign, before applying (4.194,b) and

(4.20), one replaces the original ]i by

]i *- median (/i, ql_,/2(xi), q_+,/2(zi)) • (4.22)

The resulting method is called the M4-quartic method.

To obtain MS4 constraint, which extends the MS3 constraint, one simply replaces

ti, t'i in (4.19a,b) by ui, fii where ui is defined in (3.23), and

ui = minmod [ql_3/2(xi),q'i_,/2(xi),q_+,/2(xi),q;+3/2(xi)].

This constraint, however, does not provide the original ]i. If the quartic formula (4.21)

is used for ]i, then (4.22) is necessary to avoid derivatives of the wrong sign. Since

_°i_l/2(xi) and _+l/2(zi) are needed, one might as well use the algorithm of Theorem 3.

5. Boundary conditions. The above methods apply only to the interior points.

Near the boundaries, one must use one-sided algorithms. We carry out the arguments

for the left boundary, and only occasionally, formulas for the right boundary are pre-

sented to show the symmetry between the two boundaries. For third-order methods,

/m is defined by the slope of the parabola Pm+a at x,,,,

]m '"- Pm+l(Xm) 8re+l/2 + drn+l(Xrn - Xm+l), (5.1)

],, = pn__(x,) = s,-1/2 + d,_l(x, - x,-l).

For the quartic or the fourth-order methods, the obvious choices for ]m and ]m+l are

the slopes of the cubic Qm+3/2. It follows from differentiating (4.2b) that

]m = S,.,,+,/2 + am+,(x,,, - Xm+l) + ern+3/2(Xrn -- Xm+l)(Xm -- Xm+2),

/m+l --" 8rn+l/2 + dm+l(Xm+l - Xm) + Cm+3/2(Xm+ 1 - Xm) (xm+l - Xm+2)"

As for the constraints, the second, third, and fourth-order ones presented above

have respectively a three, five, and seven-point stencil from i - k to i + k, k = 1,2 or 3.
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Near the boundaries, the high-order constraints are replacedby appropriate lower-order

ones,e.g., at m + 2, one of the third-order constraints, or the MP constraint, and at

rn + 1, the MP constraint. Since the definition of monotonicity of the data in [xi, xi+l]

involves the values fi-1 and fi+2, at the left boundary, we cannot have monotonicity of

the data in [x,n, Xm+l]. In this interval, the interpolant is monotone provided condition

(2.6) is enforced:

]m _ minmod(f,,,3Sm+,/2), ],, ,-- minmod (],,, 3s._,/2). (5.2)

If the data are smooth and have a strict local extremum next to the boundary, then the

above constraints may "clip" the extremum as shown in subsection 2.3. Consequently,

whenever possible, the boundaries should be chosen at the smooth part of the data and

away from strict local extrema.

For the M3 methods, boundary conditions which provide smoother transitions

with the interior points than (5.1) can be obtained as follows. The task is to define the

parabola Pr,. The simplest way is to let Pm be identical to Pro+l,

dm - dm+l. (5.3)

P,,, can also be defined by the two points Fro, Fm+a, and the slope q_+3/2(Xm). From

(4.2b),

qm+a/2(x) = p,,,+,(x) + e,n+3/2(x - x,,,)(x - x,,,+a)(x - xm+2).

t XBy expanding qrn+3/2(m), and using (3.5b), the above definition for Pm is equivalent

to

dm= dm+l + e,,+a/2(z,n - x,,+2). (5.4)

d,., = d,-,-1 + e,,-3/2(x,-, - x,.,-2).

II II
The third method to define Pm is obtained by setting Pm equal to qm+3/2(Xm), or

equivalently,

d,-. = dm+l -4- em+a/2(2Xm -- Xm-.t-2 -- Xrn+l). (5.5)

Observe that if the mesh is uniform, (5.4) and (5.5) respectively reduce to

2d
dm -- dm+l + -_( m+l -- din+2)
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dm -- dm+l + (dm+l - d,-,+2).

Expressions (5.3), (5.4) and (5.5) for dm correspond to extrapolation to the boundary

from the interior, with (5.4) and (5.5) being more accurate than (5.3). It is well-known

that higher-order extrapolation may cause problems. In this case, however, the essential

quantity is din+l�2, which is the median of dr,, din+l, and 0. Therefore, dm takes effect

only when it lies between 0 and din+l, and consequently, the above methods behave

at least as well as the commonly used one-sided interpolation (5.1). To define .fm, we

simply set

]_ = p'+,/2(xm). (5.6)

Clearly, if one uses (5.3), the resulting ],,, is the same as (5.1). If (5.4) is being used,

then ]m by (5.6) is identical to

= �2,Pro+l( m),qm+3/2( m

Note that to assure the monotonicity of the interpolant in [Xm, X,,+l] and [x,,+l, x,,+2],

the MP constraint must be enforced at m + 1, and (5.2) at m.

Finally, for the M4 methods, the first task is to define Q,-,+1/2. Let

7 -" f[zm,...,z,,+4] _- era+5�2 -- em+3/2 , (5.8)
Xm+4 -- Xra

and let rm+2(x) be the equation of the quartic interpolating fro,..., fm+4. Then by

applying the Newton formula, and setting em+l/2 = r_)+2(Xm+l/2)/3!,

e,,,+1/2 = e.,+3/2 + 7(x,,, + x,,,+l - z.,+2 - x,,,+3). (5.9)

Next, we define 0, m+1/2,

~l f

qm+3/2(Xm)],qm+l/2(Xm) -- median [8m+1/2, qm+l/2(Xm), ' (5.1o)

and similarly, qm+l~l /2(Zm+l) is defined by replacing Xr, by Xm+ 1 in the above equation.

Consequently, at i = re+l, and i = m+2, there is enough information for the algorithm

in Theorem 3. At the left boundary, set

/m "- qtm+l/2(Xm)" (5.11)
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6. Numerical examples. The methods presented above can be separated into

two types: methods which combine ]i defined by an interpolation formula with the

MP, M3, MS3, MG3, or M4 constraint belong to type I; those which yield the slopes

on the left and the right side of i before employing a limiter function belong to type

II. For type I methods, besides the parabolic (2.3) and the quartic formula (4.21), we

also test Hyman's fourth-order finite-difference formula [17],

fi = -fi+2 + 8fi+a - 8fi-1 + fi-2 . (6.1a)
--Xiq-2 "4- 8Xi-{-1 -- 8Xi--1 "3t- Xi--2

If the mesh is uniform, the above formula is identical to the quartic formula. For

convenience, we refer to (6.1a) as the FD4 formula. At the left boundary, the following

cubic formulas are used:

-22fro + 36fm+1 - lSfm+2 + 4fro+3 (6.1b)
],n = -22xm + 36Xm+1 - 18xm+2 + 4Xm+3'

]m+l -" -2fro - 3fm+l + 6fro+2 - 2fro+3 . (6.1c)
-2Xm - 3xm+l + 6Xrn+2 -- 2Xm+3

Formulas for the right boundary are obtained by replacing m+ by n- in the above

equations. Type I methods to be tested are the combinations of the parabolic, the

quartic, or the FD4 formulas with one of the constraints MP, MS3, MG3, M3, or

M4. Type II includes methods which employ limiter functions. The eight limiters

to be tested are: the minmod (2.14), abbreviated by MD; the Van Albada (2.23), V;

the average (2.19), A; the "Superbee" (2.17), B; and occasionally, the harmonic mean

(2.15), HM; the Fritsch-Butland (2.16), FB; the limiter (2.20), AR (average rational);

and the limiter (2.21), AQ (average cubic). Combining these limiters with the M3, M4,

or no constraint yields 24 methods. For the M3 methods, we use the boundary condition

(5.5), and for the M4, (5.10) and (5.11). Since there are 39 methods altogether, for

each data set below, we can only present some selected results for these methods.

The data sets include both rough and smooth ones. The rough data sets, which

are monotone, are used to test the "visually pleasing" or "too flat" properties of the

methods. The smooth data sets are nonmonotone. They provide information on accu-

racy.

6.1. Monotone data. The first data set appearing below is an example from

Akima, [1], [9], [10], and the second is the Fritsch-Carlson RPN 14 data [10], [17].
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Akima data Fritsch-Carlson data

x f x f

3. 10. 7.99 0.

5. 10. 8.09 2.76429E-5

6. 10. 8.19 4.37498E-2

8. 10. 8.7 0.169183

9. 10.5 9.2 0.469428

11. 15. 10. 0.943740

12. 50. 12. 0.998636

14. 60. 15. 0.999919

15. 85. 20. 0.999994

Figs. 8, 9 and 10, 11 show the respective interpolation curves for the Akima and

the Fritsch-Carlson data. Since these data are monotone, the M3, MS3, and MG3

constraints are identical to the MP constraint.

The methods presented in Figs. 8 and 10 are: (a) parabolic, (b) MG3-parabolic,

(c) FD4, (d) M4-quartic, (e) MG3-FD4, (f) M4-A, (g) harmonic mean, and (h) Fritsch-

Butland. Note that the interpolants on the right are generally more "visually pleasing"

than those on the left. The interpolants in Figs. 8(a,c) of the parabolic and FD4

methods are oscillatory. Since the mesh is irregular, in at the right boundary of the

FD4 method has the wrong sign in Fig. 8(c). Although the monotonicity constraint

corrected fn to 0 in Fig. 8(e), it is still unacceptable. Consequently, the FD4 method

(6.1) should only be used when the mesh is smooth. Fig. 8(g) shows that the harmonic

mean limiter, as observed by Fritsch and Butland [9], produces interpolants which

are "too flat". Four of the methods which yield "visually pleasing" interpolants are

presented in the right column: the constrained parabolic, constrained quartic, M4-

A, and Fritsch-Butland. Except for those of the boundary, similar remarks hold for

Figs. 10.

In Figs. 9 and 11, results for well-known (M2) limiters are presented on the

left, and the corresponding M3 methods are on the right: (a) minmod, (b) UNO, (c)

Van Albada, (d) M3-V, (e) average, (f) M3-A, (g) "Superbee", and (h) M3-B. The

interpolants of the minmod, Van Albada, UNO, and M3-V methods, shown by Figs. 9
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and 11 (a,b,c,d), are "too fiat". Although the M3 methods are more accurate, the

results are essentially the sameas those of the M2 methods since the data are rough.

The interpolants for the AR and AQ limiters arenot shownbecausethey areessentially

the sameasthoseof the average.Methods which yield "visually pleasing" interpolants

arepresentedat the bottom half of eachfigure: the averagelimiter, "Superbee", M3-A,

and M3-B.

For rough and monotonedata sets, "visually pleasing" interpolants are produced

by the following methods: the constrained (MP, MS3, or MG3) parabolic; the average,

Fritsch-Butland, and "Superbee" limiters; the M3-A, M3-B, and M3-quartic; and the

M4-A, M4-B, and M4-quartic.

6.2. Nonmonotone data. Following Hyman [17], we interpolate the function

f(x) = e -z_ on a uniform mesh. Note that the data are smooth and have a local

maximum. The results for N = n - rn = 8 mesh intervals are presented in Figs. 12-

14. Since the mesh is uniform, the FD4 formula gives identical results as the quartic

formula, and the MP-parabolic method is the same as the average limiter method.

Fig. 12 shows the results for the domain [-2.8, 3.6]. The methods presented are

of type I: (a) parabolic, (b) MG3-parabolic, (c) MP-parabolic, (d) MS3-parabolic, (e)

quartic, (f) MG3-quartic, (g) MP-quartic, and (h) MS3-quartic. Figs. 12(c,g) show that

the MP constraint clips the strict local extrema, while the MS3 and MG3 constraints

have no effect in this case. Observe that in Figs. 12(a,e), near the boundaries, the

parabolic and the quartic methods yield nonmonotone interpolants, while all the con-

strained methods preserve monotonicity. Accurate monotone interpolants are produced

by the methods presented in the right column: (b) MG3-parabolic, (d) MS3-parabolic,

(f) MG3-quartic, and (h) MS3-quartic.

Figs. 13 are identical to Figs. 12 except the domain is shifted to the left: [-2.9, 3.5].

Figs. 13(b,f) show that near extrema, the MG3 constraint always provides "plenty of

room" so that it has no effect. Note that for the three mesh intervals around the

maximum, the interpolants in Figs. 13(b,f) are respectively identical to those of the

unconstrained methods in Figs. 13(a,e). However, Figs. 13(d,h) show that the MS3

constraint occasionally does not provide "enough room", especially for a coarse mesh.
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Figs. 13. Interpolation curves for/(x) = e-="

on the domain [-2.9, 3.5], type I method_.
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Figs. 14. Interpolation curve_ for f(x) = e -_

on the domain [-2.9, 3.5], type II methods.
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Although the interpolants are "somewhat flat" at the local maximum in these figures,

they do reach a strict local maximum at an interior point of the mesh interval. These

results are consistent with the analysis in subsection 3.5. Also note that the MP

constraint produceseven "flatter" interpolants in Figs. 12(c,g), and the local maximum

of the interpolants occur at a meshpoint.

In Figs. 14, the data are the sameasthoseof Figs. 13; but the methods presented

are of type II: the secondand third-order limiter methods listed above in Figs. 9 and

11. Sincethe data aresmooth, the interpolants of the M3 methods in the right column

arc considerably smoother than those of the M2 limiters in the left. Note that the

interpolants given by the "Superbee"and the M3-B methodsin Figs. 14(g) and (h) are

a little "fuller" than the others in the same column. As shown below, they also have

larger errors, that is, the "visually pleasing" properties of the interpolants by these

methods are obtained at the cost of losing some accuracy.

In the next examples, for comparison, the domain is identical to that of Hyman:

[-1.7, 1.9]. In Table 1, the root mean square error,

1.0 1/2

RMS error= (3.-_16 f-l.7[Pf(x)-e-_']2dx)

of the interpolants is compared as the mesh is refined from N = 8 to N = 64. The last

column shows the result for an irregular mesh with N = 32, Axm+3/2 = 3AXm+l/2,

and every other mesh interval is of the same length. For type I methods, the MG3

constraint has no effect, while the MS3 constraint has no effect only when the mesh

is fine enough, that is, when N > 16. It can be seen that the FD4 formula is highly

accurate for a uniform mesh; however, for an irregular mesh, it is much worse than

the parabolic and the quartic formulas. Similarly, the average formula is identical to

the MP-parabolic method for a uniform mesh, but when the mesh is irregular, it has a

larger error. Observe that the MS3, MG3-parabolic, and all the M3 methods are more

accurate than the M2-1imiter methods. Among the limiters, those with g'(1) = 1/2 are

more accurate than those without.

Note that for the minmod (or "Superbee") limiter, ]i - f'(xi) and ]i+1 - f'(xi+l)

are of the same sign in the monotone part of the data since each jki is closer to (or further

from) 0 relative to the exact solution f'(xi). Consequently, Pf(x)- f(x) changes sign
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in [zi, zi+1], and the root mean square error favors these methods.

norm is the average error of ]i:

n

Averageerror = N + 1 I]i-/'(xi)l.
i=m

A more accurate

Method N=8 N= 16 N=32 N=64 N=32irr.

parabolic 4.2E-3 4.1E-4 4.3E-5 4.9E-6 5.0E-5

MG3-parabotic 4.2E-3 4.1E-4 4.3E-5 4.9E-6 5.0E-5

MS3-parabolic 4.9E-3 4.1E-4 4.3E-5 4.9E-6 5.0E-5

MP-parabolic 5.9E-3 2.3E-3 8.0E-5 2.5E-5 8.2E-4

quartic 3.4E-3 7.4E-5 2.3E-6 1.2E-7 7.5E-6

FD4 3.4E-3 7.4E-5 2.3E-6 1.2E-7 2.0E-3

MG3-FD4 3.4E-3 7.4E-5 2.3E-6 1.2E-7 2.0E-3

MS3-FD4 4.5E-3 7.4E-5 2.3E-6 1.2E-7 2.0E-3

MP-FD4 5.6E-3 2.4E-3 6.9E-5 2.4E-5 2.0E-3

M2-Limiters:

Minmod 1.1E-2 2.9E-3 5.3E-4 1.2E-4 1.3E-3

Van Albada 9.9E-3 2.6E-3 3.3E-4 6.5E-5 1.2E-3

Average 5.9E-3 2.3E-3 8.0E-5 2.5E-5 1.1E-3

Superbee 7.9E-3 3.3E-3 4.7E-4 1.2E-4 1.2E-3

Fritsch-Butland 6.8E-3 2.4E-3 1.5E-4 4.5E-5 1.1E-3

M3-

MD or UNO 5.2E-3 4.4E-4 4.8E-5 5.3E-6 6.2E-5

V 4.5E-3 3.5E-4 3.7E-5 3.4E-6 8.1E-5

A 4.3E-3 4.1E-4 3.8E-5 3.4E-6 8.5E-5

B 5.9E-3 8.6E-4 9.2E-5 1.0E-5 1.7E-4

M4-

MD 3.2E-3 1.7E-4 8.1E-6 4.4E-7 1.3E-5

V 2.4E-3 1.2E-4 3.9E-6 1.8E-7 1.0E-5

A 2.7E-3 1.8E-4 5.5E-6 1.8E-7 1.4E-5

B 3.4E-3 2.6E-4 9.6E-6 5.1E-7 2.1E-5

Table 1: RMS errors for f(x) = e -_
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Method N-8 N= 16 N=32 N=64 N = 32 irr.

parabolic 5.8E-2 1.6E-2 4.0E-3 9.9E-4 3.1E-3
MG3-parabolic 5.8E-2 1.6E-2 4.0E-3 9.9E-4 3.1E-3

quartic 4.1E-2 1.7E-3 9.9E-5 6.1E-6 7.4E-5
M4-quartic 4.8E-2 1.7E-3 9.9E-5 6.1E-6 7.4E-5

M3-quartic 5.4E-2 1.7E-3 9.9E-5 6.1E-6 7.4E-5

MP-quartic 6.2E-2 2.3E-2 8.6E-4 3.9E-4 7.4E-3

M2-Limiters:

Minmod 1.8E-1 1.0E-1 4.7E-2 2.4E-2 5.0E-2

Van Albada 1.3E-1 6.0E-2 1.7E-2 5.7E-3 2.8E-2

Average 7.6E-2 3.6E-2 4.7E-3 1.4E-3 2.8E-2

Average Rational 9.8E-2 4.3E-2 9.0E-3 2.9E-3 2.7E-2

Average Cubic 7.4E-2 4.2E-2 1.0E-2 4.7E-3 2.8E-2

Harmonic Mean 1.1E-1 4.7E-2 1.1E-2 3.7E-3 2.7E-2

Fritsch-Butland 7.6E-2 3.5E-2 9.0E-3 5.8E-3 2.8E-2

Superbee 9.9E-2 7.7E-2 4.0E-2 2.2E-2 4.7E-2

M3-

MD or UNO 7.1E-2 1.8E-2 4.6E-3 1.1E-3 3.7E-3

V 5.5E-2 9.5E-3 2.5E-3 5.6E-4 2.8E-3

A 5.6E-2 1.1E-2 2.6E-3 5.6E-4 3.0E-3

AR 5.3E-2 1.1E-2 2.6E-3 5.6E-4 2.9E-3

AQ 6.3E-2 1.4E-2 2.9E-3 5.8E-4 3.2E-3

HM 5.2E-2 1.0E-2 2.5E-3 5.6E-4 2.9E-3

FB 6.0E-2 1.5E-2 3.9E-3 9.0E-4 4.2E-3

B 7.9E-2 2.8E-2 7.3E-3 1.8E-3 7.3E-3

M4-

MD 4.2E-2 5.3E-3 6.1E-4 7.6E-5 4.6E-4

V 2.8E-2 2.4E-3 1.5E-4 1.2E-5 1.8E-4

A 3.4E-2 3.5E-3 1.9E-4 1.2E-5 2.4E-4

AR 3.3E-2 3.5E-3 1.9E-4 1.2E-5 2.4E-4

AQ 3.9E-2 3.6E-3 1.9E-4 1.2E-5 2.4E-4

HM 3.2F_,-2 3.5E-3 1.9E-4 1.2E-5 2.4E-4

FB 3.8E-2 4.4E-3 3.3E-4 3.3E-5 3.4E-4

B 4.8E-2 6.9E-3 7.2E-4 8.5E-5 6.5E-4

Table 2: Average errors of ]i for f(x) = e -_2
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In Table 2, the averageerrorsare listed. As the meshspacingis reducedby a factor

of 2, the error of the parabolic method is reducedby a factor of roughly 4, the quartic

method by 16, the minmod and "Superbee" limiter by 2, and the M3 methods by 4.

The error of the M3-A method is about half that of the UNO, M3-B, and parabolic

methods. This result is consistent with the analysis in subsection3.5. Also note that

limiters with g_(1) = 1/2 are more accurate than those without. Among limiters with

this property, the average errors are essentially the same. The errors of the M4-MD

and M4-B methods reduce by a factor of roughly 8 as the mesh is refined, and for the

M4-A method, the factor is larger than 8 in this case. The M3-B and M4-B methods

have the largest error in the M3 and M4 classes, respectively.

The examples in this subsection show that accurate, monotonicity-preserving, and

"visually pleasing" interpolants are produced for smooth data by the following methods:

MS3, MG3, M3-parabolic and quartic, M3-V, M3-A, M4-V, M4-A, and M4-quartic.

These methods, except for the M3-V and M4-V, also produce monotonicity-preserving

and "visually pleasing" interpolants for rough data, as shown in the previous subsection.

7. Discussion and conclusions. The above methods can be applied to con-

scrvation laws, see [16], [29] for some preliminary results in the piecewise linear case.

We hope to report further results for the piecewise linear and parabolic methods in a

forthcoming paper.

For rough, smooth, monotone or nonmonotone data sets, the methods discussed

produce stable, monotonicity-preserving, and "visually pleasing" C 1 Hermite cubic

interpolants which are at least third-order accurate. The two simplest methods are

the MS3-parabolic and M3-A methods, where the latter has an average error for the

derivatives roughly half that of the former. Without increasing the stencil, the M3-

quartic method is fourth-order accurate--the highest possible order of accuracy for

a cubic interpolant-- except adjacent to strict local extrema and inflection points,

where the accuracy degenerates to third-order. Uniform fourth-order accuracy can be

obtained by using the M4-A or M4-quartic methods.
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